## Lecture 4

# **Understanding op-amp models**

Prof Peter YK Cheung Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EE2\_CAS/ E-mail: p.cheung@imperial.ac.uk

PYKC 15 Oct 2024

## What is SPICE Simulator?

- Simulation Program with Integrated Circuit Emphasis
  - > Developed by Larry Nagel at Berkeley in 1970's (under Prof Don Pederson).
  - Many commercial and freeware versions available.
  - Most significant CAD tool that drove the advancements in microelectronics.
- Linear Technology SPICE (LTspice)
  - Developed by Mike Engelhardt in early 2000s when he worked for Linear Technology (later bought by Analog Devices).
  - Added schematic capture and results plotting.
  - > Engelhardt now has his own company marketing Qspice not free.
- Input to SPICE is a SPICE netlist multiple lines of text that describe:
  - Components and voltage/current sources in a circuit.
  - > How the components and sources are connected to each other.
  - Model of components.
  - Type of analysis to be performed by the simulator

### **Example of a Spice netlist**



PYKC 15 Oct 2024

### **SPICE Cheat Sheet**

| Letter | Component                         |
|--------|-----------------------------------|
| R      | Resistor                          |
| С      | Capacitor                         |
| L      | Inductor                          |
| V      | independent voltage source        |
|        | Independent current source        |
| М      | MOSFET                            |
| D      | Diode                             |
| Q      | Bipolar transistor                |
| Х      | Subcircuit                        |
| E      | Voltage-controlled voltage source |
| G      | voltage-controlled current source |

| Letter   | Unit  | Multiplier |  |  |
|----------|-------|------------|--|--|
| T, t     | tera  | 10 E+12    |  |  |
| G,g      | giga  | 10 E+9     |  |  |
| MEG, meg | mega  | 10 E+6     |  |  |
| K, k     | kilo  | 10 E+3     |  |  |
| M, m     | milli | 10 E-3     |  |  |
| U, u     | micro | 10 E-6     |  |  |
| N, n     | nano  | 10 E=9     |  |  |
| Р, р     | pico  | 10 E-12    |  |  |

| Directive | Action                         |  |  |  |  |
|-----------|--------------------------------|--|--|--|--|
| .op       | DC operating point analysis    |  |  |  |  |
| .ac       | Small signal AC analysis       |  |  |  |  |
| .tran     | Transient analysis             |  |  |  |  |
| .backanno | Annotate current back to ports |  |  |  |  |
| .include  | Include another file           |  |  |  |  |
| .lib      | Include a library              |  |  |  |  |
| .end      | End of netlist                 |  |  |  |  |
| .ends     | End of subcircuit              |  |  |  |  |
| .ic       | Set initial condition          |  |  |  |  |

| * Netlist for Lab1Task2               |  |  |  |  |  |
|---------------------------------------|--|--|--|--|--|
| R3 VG 0 200k                          |  |  |  |  |  |
| R2 V1 N002 200k                       |  |  |  |  |  |
| C1 N001 0 0.1µ                        |  |  |  |  |  |
| XU1 VG N002 N001 0 V1 MCP6001         |  |  |  |  |  |
| V2 N001 0 5                           |  |  |  |  |  |
| V1 VG 0 SINE(1 0.5 10K)               |  |  |  |  |  |
| .tran 1m                              |  |  |  |  |  |
| .lib /Volumes/External                |  |  |  |  |  |
| SSD/Dropbox/_My Documents/MCP6001.mod |  |  |  |  |  |
| .backanno                             |  |  |  |  |  |
| .end                                  |  |  |  |  |  |

PYKC 15 Oct 2024

## Model input stage of MCP6001

| Differential Input Impedance | Z <sub>DIFF</sub> | —    | 10 <sup>13</sup>   3 | —    | Ω  pF |
|------------------------------|-------------------|------|----------------------|------|-------|
| Input Offset Voltage         | V <sub>OS</sub>   | -4.5 | _                    | +4.5 | mV    |



G1 0 int\_gain offset in- 0.00628

#### Model gain vs frequency & slew rate of MCP6001



... G1 0 int\_gain offset in- 0.00628 R2 int\_gain 0 63.7Meg C2 int\_gain 0 1n

✤ Assume compensation capacitor C2 is 1nF

| AC Response                      |                 |      |    |     |   |      |            |
|----------------------------------|-----------------|------|----|-----|---|------|------------|
| Gain Bandwidth Product           |                 | GBWF | >  | 1.0 |   | MHz  |            |
| Phase Margin                     |                 | PM   | _  | 90  |   | 0    | G = +1 V/V |
| Slew Rate                        |                 | SR   | _  | 0.6 | _ | V/µs |            |
| DC Open-Loop Gain (Large Signal) | A <sub>OL</sub> |      | 88 | 112 | - | dB   | [          |

### Model open-loop gain vs frequency of MCP6001



- Therefore  $R_2 = 63.7 \times 10^6 \Omega$
- Calculate gm for G1:

 $gm \times R_2 = A_{OL}$ , hence  $gm = \frac{400,000}{63.7} \times 10^{-6} = 0.00628$ 

#### **Model Slew rate limit**



Model the slew rate limit of 0.6V/us:

$$SR = max \frac{dV_{c2}}{dt} = max(current of G1)/C2,$$
 therefore  $max(current) = SR \times C_2 = 0.6mA$ 

G1 0 int\_gain value={limit(0.00628\*V(offset,in-),0.6m, -0.6m)}
R2 int\_gain 0 63.7Meg
C2 int\_gain 0 1n

### Model the output stage of MCP6001



\* output stage - current limit to +/- 20mA, ROUT = 300 ohm

| G2 0 out value={limit(V(int_gain, 0)/300, 20m | $, -20m) \}$ |
|-----------------------------------------------|--------------|
| R3 out 0 300                                  |              |
| * output voltage limited to V+ and V-         |              |
| D1 int_gain V+ Dlimit                         |              |
| D2 V- int_gain Dlimit                         |              |
| .model Dlimit D(Ron=0.0001 Roff=100G Vfwd=0)  |              |

#### The complete model of MCP6001



### What specifications are NOT modelled?

- Common mode input impedances
- Common mode rejection ratio
- Power supply rejection ratio
- Common mode input voltage clipping
- Temperature effect on input bias current and offset voltage
- Noise characteristics of the op-amp
- Quiescent current of the op-amp

## **Power supply bypass (decoupling) capacitor**



- Wire connection from power supply to op-amp power pin is an inductor.
- Inductor has high impedance at high frequency.
- Current draw through op-amp causes current fluctuation in inductor can feedback to the op-amp.
- Resulting in op-amp prone to oscillation at high frequency or output overshoot.
- Add ceramic or tantalum capacitor close to op-amp supply pin to bypass (or decouple) any such high frequency fluctuations.